330 research outputs found

    A novel 3D NoC scheme for high throughput unicast and multicast routing protocols

    Get PDF
    Nova 3D-NoC arhitektura dizajnirana je s većom mogućnošću prihvaćanja komprimiranih podataka. Predložena shema daje značajne rezultate u odnosu na učinkovitost i propusnu moć mreže. U toj shemi, predloženoj za 3D-NoC, podaci koje je potrebno prenijeti, komprimirani su već prije prijenosa tako da je veličina paketa s podacima smanjena već prije prenošenja. Pri prijemu, originalni podaci se obnavljaju dekompresijom kodiranih podataka. Golomb-Rice algoritam se primjenjuje za razvoj i primjenu kodera i dekodera hardvera (kodek dekoder). Dobiven je rezultat i za unicast i multicast usmjeravanje. Povećanje učinkovitosti i propusne moći za predloženi 3D-NoC (unicast) je 9,25 % odnosno 17,61 %. Slično tome, poboljšanje učinkovitosti i propusne moći za predloženi 3D-NoC (multicast) je 8,65 % odnosno 14,66 %. Nadalje, rezultati pokazuju da je poboljšanje veće kod manjih širina pojasa, a to znači da predloženi 3D-NoC dobro funkcionira u slučaju uskih širina pojasa.Novel 3D-NoC architecture has been designed by expanding the impression of lossless compression of data. The proposed design shows remarkable results in terms of power efficiency and network throughput. In this scheme, proposed for 3D-NoC, the data to be transmitted is compressed on the transmitting side, so that the data packet is reduced before transmitting. And at the receiver, the original data is restored by decompressing the encoded data. Golomb-Rice algorithm is utilized to develop and implement the hardware encoder and decoder (Codec). The result is evaluated for both unicast and multicast routing. The improvement in power efficiency and throughput for proposed 3D-NoC (unicast) is 9,25 % and 17,61 % respectively. In similar, the improvement in power efficiency and throughput for proposed 3D-NoC (multicast) is 8,65 % and 14,66 % respectively. Further, from the result we observed that the improvement variation is higher for smaller bandwidth, which means the proposed 3D-NoC works well in case of narrow bandwidth

    Impact of 3D IC on NoC Topologies: A Wire Delay Consideration

    No full text
    International audienceIn this paper, we perform an exploration of 3D NoC architectures through physical design implementation based on two tiers Tezzaron 3D technology. The 3D NoC partitioning is done by dividing the NoC's datapath component into two blocks placed in the two tiers. Two Stacked NoC architectures namely Stacked 3D-Mesh NoC and Stacked 2D-Hexagonal NoC developed based on this partitioning strategy are analyzed by comparing their performances with Stacked 2D-Mesh NoC and classical 2D- Mesh and 3D-Mesh NoC. In order to measure the impact of wire delay on performance, two technology libraries (130 nm and 45 nm) representing old and advanced technologies have been used for the performance analysis. Results from physical implementations show that in advanced technologies such as 45 nm and below, the performance of Stacked 2D NoC topologies with datapath partitioning method have better performances compared with traditional 2D/3D Mesh topologies and Stacked 3D Mesh topology. We advocate here that with stacking there is no need for 3D NoC topologies for advanced 2-tier 3D IC and this is also confirmed for multistage networks like butterfly

    STTAR: A Traffic- and Thermal-Aware Adaptive Routing for 3D Network-on-Chip Systems

    Get PDF
    Since the three-dimensional Network on Chip (3D NoC) uses through-silicon via technology to connect the chips, each silicon layer is conducted through heterogeneous thermal, and 3D NoC system suffers from thermal problems. To alleviate the seriousness of the thermal problem, the distribution of data packets usually relies on traffic information or historical temperature information. However, thermal problems in 3D NoC cannot be solved only based on traffic or temperature information. Therefore, we propose a Score-Based Traffic- and Thermal-Aware Adaptive Routing (STTAR) that applies traffic load and temperature information to routing. First, the STTAR dynamically adjusts the input and output buffer lengths of each router with traffic load information to limit routing resources in overheated areas and control the rate of temperature rise. Second, STTAR adopts a scoring strategy based on temperature and the number of free slots in the buffer to avoid data packets being transmitted to high-temperature areas and congested areas and to improve the rationality of selecting routing output nodes. In our experiments, the proposed scoring Score-Based Traffic- and Thermal-Aware Adaptive Routing (STTAR) scheme can increase the throughput by about 14.98% to 47.90% and reduce the delay by about 10.80% to 35.36% compared with the previous works

    Design and Implementation of High QoS 3D-NoC using Modified Double Particle Swarm Optimization on FPGA

    Get PDF
    One technique to overcome the exponential growth bottleneck is to increase the number of cores on a processor, although having too many cores might cause issues including chip overheating and communication blockage. The problem of the communication bottleneck on the chip is presently effectively resolved by networks-on-chip (NoC). A 3D stack of chips is now possible, thanks to recent developments in IC manufacturing techniques, enabling to reduce of chip area while increasing chip throughput and reducing power consumption. The automated process associated with mapping applications to form three-dimensional NoC architectures is a significant new path in 3D NoC research. This work proposes a 3D NoC partitioning approach that can identify the 3D NoC region that has to be mapped. A double particle swarm optimization (DPSO) inspired algorithmic technique, which may combine the characteristics having neighbourhood search and genetic architectures, also addresses the challenge of a particle swarm algorithm descending into local optimal solutions. Experimental evidence supports the claim that this hybrid optimization algorithm based on Double Particle Swarm Optimisation outperforms the conventional heuristic technique in terms of output rate and loss in energy. The findings demonstrate that in a network of the same size, the newly introduced router delivers the lowest loss on the longest path.  Three factors, namely energy, latency or delay, and throughput, are compared between the suggested 3D mesh ONoC and its 2D version. When comparing power consumption between 3D ONoC and its electronic and 2D equivalents, which both have 512 IP cores, it may save roughly 79.9% of the energy used by the electronic counterpart and 24.3% of the energy used by the latter. The network efficiency of the 3D mesh ONoC is simulated by DPSO in a variety of configurations. The outcomes also demonstrate an increase in performance over the 2D ONoC. As a flexible communication solution, Network-On-Chips (NoCs) have been frequently employed in the development of multiprocessor system-on-chips (MPSoCs). By outsourcing their communication activities, NoCs permit on-chip Intellectual Property (IP) cores to communicate with one another and function at a better level. The important components in assigning application duties, distributing the work to the IPs, and coordinating communication among them are mapping and scheduling methods. This study aims to present an entirely advanced form of research in the area of 3D NoC mapping and scheduling applications, grouping the results according to various parameters and offering several suggestions for further research

    Fog computing, applications , security and challenges, review

    Get PDF
    The internet of things originates a world where on daily basis objects can join the internet and interchange information and in addition process, store, gather them from the nearby environment, and effectively mediate on it. A remarkable number of services might be imagined by abusing the internet of things. Fog computing which is otherwise called edge computing was introduced in 2012 as a considered is a prioritized choice for the internet of things applications. As fog computing extend services of cloud near to the edge of the network and make possible computations, communications, and storage services in proximity to the end user. Fog computing cannot only provide low latency, location awareness but also enhance real-time applications, quality of services, mobility, security and privacy in the internet of things applications scenarios. In this paper, we will summarize and overview fog computing model architecture, characteristic, similar paradigm and various applications in real-time scenarios such as smart grid, traffic control system and augmented reality. Finally, security challenges are presented

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho
    • …
    corecore